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Abstract  
Fractal dimensions are the most important attributes of fractals and the 
Box counting dimension is widely used. Usually it is not so easy to 
determine dimensions. In some papers we have considered a class of 
functions and we have studied the finitude of the Hausdorff h-measures 
of the graph, Ã, of an element of this class. In this paper we determine 
the Box dimension of Ã. 
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1. INTRODUCTION 
The importance of the fractal sets in sciences increases in the last years. The most 
important attributes of fractals are the dimensions.  
For the Besicovitch functions, given by  
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where ,21  s 0 and 
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some cases ([5]), but their exact fractal dimension is unknown. 
Definition 1 Let Rn be the Euclidean n - dimensional space. If 00 r  is a given number, 

then, a continuous function h(r), defined on [0, 0r ), nondecreasing and such that 
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If ,0 E is a nonempty and bounded subset of Rn and h is a measure function then, the 
Hausdorff h - measure of E is defined by: 
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inf being considered over all covers of E with a countable number of spheres of radii 
i . 

Particularly, when   ,srrh   the obtained measure is called the s-dimensional Hausdorff 
measure and is denoted by .sH  

Definition 2 It is said that the sequence   *N ii  satisfies the Hadamard condition if there 

exists 1 such that ,1 ii   for every .*Ni  
It is known that the graph of a function RDf :  is the set  

     Dxxfxf  ,, . 
In our papers ([1] - [4]), the function tkcos  from (1) was replaced  
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and the following function was introduced 
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where g is given in (2) and     R*Nii  is a sequence that satisfies the Hadamard 

condition.  
Theorem 1 ([1], [3]) If h is a measure function such that )(th ~ pt , ,2p  f is the function 
defined in (3),  2,1s  and      R*Nii  is a sequence that satisfies Hadamard 

condition, then     fH . The result remains true if 1p and .1  
In what follows we shall determine the Box dimension of the graph of the function given 
in (3). 
There are many equivalent definitions ([6]) of the Box dimension, but we shall use the 
following one. 
Definition 3 Let  be a positive number and let E be a nonempty and bounded subset of 
R2. Consider the  - mesh of R2,  
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If  EN  is the number of the  - mesh squares that intersect E, then the upper and lower 

Box dimension of E are defined by 
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If these limits are equal, the common value is called the Box dimension of E and is 
denoted by EBdim . 

For any given function   R1,0:f and    1,0, 21 tt , we denote by  21 , ttR f  the 

oscillation of f on the interval  21 , tt , that is       .sup,
21 ,
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For briefly, any C, ,1C �, 5C  in this paper indicates a positive constant that may have 
different values.  



2. RESULTS 

In this part of the paper we shall use the following results: 

Lemma 1 ([6]). Let   R1,0:f be a continuous function, 10   and m be the least 

integer greater than or equal to .1  If N  is the number of the squares of the  - mesh 

that intersects  f , then 
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Lemma 2 (Hölder inequality). If k N*, ii ba , R, ki ,1  and ,10  p 1 p
pq , then 
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Theorem 2 If f is the function given in (3), with  2,1s , then   .dim sfB   

Proof. 1. We prove that   .dim sfB   

The first part of the proof follows that of the theorem 1. 

Let us consider ,10  small enough and k N* such that: 
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Using the Hadamard condition it can be deduced that 
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where 1C and 2C  are constant that don�t depend on   and s. Thus, 
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From (4) and (5) we obtain 
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From lemma 1 and (6), we deduce that 

     





  s

m

j
f CCjjRmN 2

21
111

1

0

1 22)1(,2

  .22 21
1 sCCN 

   

Since  1,0 and  2,1s , then s  1 and from the previous relation it results that  
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so,   .dim sfB   

2. We prove that .)(dim sfB   

If we consider  1,0  and *Nk such that 
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and *Nj , then 
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We shall estimate the modulus from the formula (7), using lemma 2. 

Let  1,0p  be any number and 1 p
pq . Then 
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Using the Hadamard conditions and  2,1s , we obtain 
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A point x is called an exceptional point for a function g if the derivative  xg ' doesn't exist. 

For the exceptional points ,)1(,  jj ii  
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and using (7), it can be seen that 
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Thus, the relations (8) - (11) give: 
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Now, from lemma 1,  
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thus,   .dim sfB   

From the parts 1 and 2, it results that   .dim sfB   

Corollary 1 If g is the function given in (2),  2,1s  and  
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Corollary 2 If g is any periodic zig - zag function,  2,1s  and  
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